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1. Introduction

The Greenland Sea, Iceland Sea, and Norwegian Sea (GIN S
with various stages of modification that links the polar ocean wit
and modification of water masses a large number of regional
(NAW) is relatlvely warmer and saline (T > 2 °C, S > 34. 9

3 but also the regional biological systems. The
major circulation pattern of the GIN Sea is charg ;,tenze “by. the Northward flowing Norwegian Atlantic Current
(NAC) in the east and the southwestward flowingiEast Greenla%rrem (EGC) along the East Greenland shelf and
leaving the Iceland Sea via the Denmark Strait.

Convection in GIN Sea is seen as a glok
circulation through the production and vﬁ
oceanic convection are taken to be the indi
consequence of chimneys aging in a
first investigated in order to underst:
[2]. Question arises: How can
This paper describes a multi-frag
intermittency of the upper layer

r ocean nonstationarity and intermittency from observational data?
a high-resolution temperature dataset to obtain the nonstationarity and

In Ju]y~August 1 7, ﬁne§olution temperature data are collected on board of M/V SEA SEACHER by the Royal
Navy’s Admir: ablishment (ARE) using a digital thermistor chain (280 m long, 100 sensor pods) with a
single 200 km ¢ tow (4 knots speed) near 69 °N, 18 °W (Fig. 2) in the east edge of EGC [3]. The upper ocean
(surface go 280 h)awas sampled every 0.9 s, obtaining a temperature profile about every 2 m along the track. Each
sensor po&of the.chain measures temperature, and about one in five also measures pressure, allowing the depth dis-
tribution of tempe%fme to be deduced.

Flg.“'  shows contour plot of temperature ranging from 2 to 8 °C with 0.2 °C increment on a vertical cross-section
between fﬁa w6 marked locations ‘b’ and ‘e’ (Fig. 2). As pointed by Scott and Killworth [3], the temperature shows a
small-scale var1ab111ty with highly irregular nature. The total length of the temperature cross-section is 90 km with each
interval of 6 km. The thin surface layer (depth around 5 m) temperature is about +7.5 °C. Below the surface layer, there
is a first thermocline with temperature rapidly decreasing with depth to 25 m. The vertical gradient in the first ther-
mocline is very strong (~0.45 °C/m). Cold, relatively uniform sublayer exists below the first thermocline from 25 to 70
m, reaching a minimum temperature of —1.5 °C. Below the cold sublayer, there is a second thermocline (70-90 m,
thickness around 20 m) where the temperature increases with depth with a vertical temperature gradient around 0.135
°C/m. Below the second thermocline, there exists a warm intermediate layer (~100-300 m) with a maximum temper-
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Fig. 1. Schematic representation of bathymetm in the GIN Sea.

~,

P

o

Fig. 2. Track along which the thermistor chain data were taken. The dotted curve represents 1000 m depth contour (after Scott and
Killworth [3]).

25

ature o%%lﬂ otethat the thermal characteristics are different between the two thermoclines. The first (second)
thengpc]iné%fg%gtu% <the decrease (increases) of temperature with depth. The chimneys are observed below the char-
actefistic cold s‘ﬁdp@ér (70 m depth) with width of 3 km (Fig. 4). The water is about 1.2 °C cooler within than out of the
chimneys. Ehe %gﬁﬁimneys reach the maximum thermistor chain depth (~280 m). Containing water of temperature down
to about 0 °C;the chimneys appear to punch the cold water clearly through the warm intermediate layer water with a
maximum temperature of +1.2 °C.

3. Power spectra

What is the inherent thermal variability identified from this high-resolution temperature data with multi-layer and
chimney structures? What are the statistical properties? Before answering these questions, we should first investigate the
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Fig. 3. Temperature cross-section obtained from the thermistor chain data collected along the track from Station-b to Station-e (after
Scott and Killworth [3]). v
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Fig. 4. An expansion of central part of Fi

(1)

@)

at all deptﬁ%gq%@gg& but for the sake of brevity and to elucidate the important points, only spectrum at 20 m depth
59 (cold sublayer; z@lg. 5)*is-shown. A Bartlett window was used to taper the ends of each series before calculating the

g

60 powe@g@spe‘étxg’ to ?%gce the spectral leakage in the wavenumber domain. Fig. 5 shows the existence of a spike on
Tog,(kL/2).~ 6.5,

62 correspond to a scale of approximate 3 km in the thermal variability. This length scale (3 km) coincides with the
63 chimney scale, which may imply the existence of a linkage between the cold sublayer and the chimney formation.

64 4. Stationarity

65 For a scaling process, one expects power law behavior [4],

E(k) o k™, 3)
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Energy Spectrum at depth=20m
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Fig. 5. Power spectrum of temperature ﬁ‘wm depth.

rmation about the degree of stationarity of

the data [5,6]. If B < 1, the field is stationary; if 1 < f8

crements and in particular, the small-scale gradie

stationary increments.
The power spectra for all the depths have mu

1< <2,

which means the temperature field of t
(Fig. 5).

5. Structure functions

Since the thermistor c] s stationary increments, we should study the statistical characteristics of the

gradient field,
|AT (r;x)] = |Bxisy) ~d Fi=0,1,...,4—r, (5)

where r denotessth betw%h two data points. Obviously, r is inversely proportional to the wavenumber %,

me@ﬁ*% theﬁﬁ%poer of the gradient field |[AT(r;x)|,
) ‘W,:‘ S 5;/ l g
S(r, gy =(|AT(r;0)I%) =7 D IAT(r X)) . (6)

=0
For example, r = 1, g = 1, the structure function
1 A-1
S(l,])=ﬁZIT(x,-+|)—T(x,-)l, ™
i=0

represents the average magnitude of gradient.
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Fig. 6. Structure functions for diffe en

straight lines with different slopes show that the structt tions ogghe upper ocean temperature in the southwestem
GIN Sea satisfies the power law ‘

S(r, q) o« rC(q), (8)

with the exponent {(g) depending on g. Sin
6) agrees quite well with earlier studies [7,8](
represented by

{(q) = H(q)q,

where H(q) is nearly a constants
The power of the structure ﬁﬁ

g for selected levels. All the ‘%R

increasing with g (surfacé’

creasing with ¢ (first the
The structure fun

mqnotonically and near-linearly increasing with g. Thus, it may be
)

s'computed for the whole dataset. Fig. 7 shows the dependence of {(¢) on -
r-linear) converges at g = 0 [{(0) = 0], and shaw three different patterns: (a) slow
.&,;n y) intermediate-rate increasing with g (second thermocline, 80 m), (c) fast in-
, 20 mi: cold sublayer, 40—-60 m; intermediate warm layer, below 100 m).

(r, 1), is often used to determine the statistical characteristics of the data such as

(10)

, represents statistical characteristics of data. Since the power {(1) (i.e., H(1)) varies with depth
0 11 at the surface and 0.56 at 120 m depth (intermediate warm layer), the thermal field in the
N Sea is nearly stationary.

If g(T) is defined as the graph of T'(x), whose dimension can be defined by [9]

Dgr)=2—-H,. (11)

For a stochastically continuous (4, = 1) data T'(x), the graph should be a smooth curve, whose dimension, D,(T)
should be 1. If the graphs g(7) fill the whole space (exact stationary),

Dyry =2, (12)
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Fig. 7. Dependence of the structure function’s on ¢ and depth

Table 1

Power of the structure function S(r,1) and the dimension of
Depth (m) 0 20 ) 120 140 200
(1) =H, 0.11 0.43 0.56 0.52 0.50
Dy 1.89 1.57 1.44 1.48 1.50

which corresponds to H; = 0.

Table 1 shows that the dimensig
structure) from higher values such as I°
(first thermocline: 20 m), 1.52-1
The decreasing order of station
intermediate layer.

! =40, 60 m) and 1.44-1.50 (warm mtermedxate layer: 120, 140, 200 m)
rface, second thermocline, first thermocline, cold sublayer, and warm

6. Singular measure%
(13)

:+r—
me,Hm, —r (14)
r ‘=

The mean of the gth power of &(r;x;)

A-r

M(r,q) = (e(rix)") = —— Z[e(r x)’, (15)

i=0

is defined as the gth-order singular measure. Obviously, for ¢ =0,
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M(r,0)=1. (16)
Forg=1,
1 4= 1 A= [ i
M(r,1) = (e(rix)) = —— 'Z.;[e(r;x;)] =12 [; ; e(l;xj)] =1 (17)
The singular measures are computed for all depths. For simplicity, M(r, q) for the depth of 40:m re (Fig.

8). Near-linear dependence of log,[M(r, g)] on log,(r) is found with different g-values from 0.5 to
with different slopes show that the singular measures with various g for the upper layer temperat
GIN Sea satisfies the power law ;

M(r,q) < r¥@  g>0, (18)
with the power K(g) varying with g. From Egs. (16) and (17), we have
K(0)=K(1) =0. (19)
Several characteristics are found from Fig. 9: The power K(g) is a con
dz; (2") >0, (20)
for all ¢ and
K(g)<0 onlyif0<g<1 (21)

which reflects the fact that, in this range, taking a gth po ices the fluctuation of &(r; x;); and otherwise

K(g) >0, ifg=>0 (22)
Following [10,11] we may define a function
K
clo) =22, (23)
For g — 1, we use I’Hosptal’s rule to.defi S tforward measure of inhomogeneity in the sense of singular

measure [4]:

Depth 40m

1.5}

log,, IM(r.a)]

Fig. 8. Singular measures for different g-values (depth =40 m).
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K(q)

q

(24)

7. Mean multi-fractal plane

omputed, however, the first moment (¢ = 1) provides im-

Statistical moments of all orders (qth
measures the degree of intermittency in the system, while H;

portant information about the data. Ti

measures its degree of nonstatlonant T,h

nonstaionarity and intermittency ;
Both parameters have geo

[4]). The information dimensi8 by (1 — C}), is a first-order estimate of sparseness of strong gradient

01r
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Fig. 10. Mean multi-fractal plane (H,, C)) for the southwestern GIN Sea thermal field.
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distributed in the system. The graph dimension, represented by (2 — H,), is a first-order estimate of roughness in the
system. Both parameters have analytical meanings: C; (sparseness) is related to singularity and H,; (roughness) is
connected to the lack of differentiability. The southwestern GIN Sea upper layer thermal field shows multi-fractal
characteristics (Fig. 10) in terms of C; and H, We find larger variation in H; (0.11-0.56) than in C; (0.08-0.10).
Identification of (H,, C;) ranges helps to select realistic model to describe the field [4].

8. Conclusions

The multi-fractal analysis provides a useful framework for analyzing ocean data when comp
The upper layer thermal structure in the southwestern GIN Sea has the following features:

(1) The energy spectrum at 20 m depth (cold sublayer) shows the existence of a spike‘at:t
in the thermal variability. This length scale (3 km) coincides with the chimney%g,
of a linkage between the cold sublayer and the chimney formation.

(2) The power spectra for all the depths have multi-scale characteristics with
2). This means the temperature field of the southwestern GIN Sea sublay
ments.

(3) The structure function has multi-fractal characteristics, i.e., the power of the gth-erder structure function is mono-
tonically and near-linearly increasing with g. However, the rat of steh,an increasing varies with depth:'(a) slow
increasing with g (surface layer, 0 m), (b) intermediate-rate incre: as ing with g (second thermocline, 80 m), (c) fast

increasing with g (first thermocline, 20 m; cold sublayer, &60 m’;‘%g;gngfﬂcdiate warm layer, below 100 m).

(4) Two parameters for the first moment (g = 1) structure funeti nd ﬁg‘ﬁﬁar measure, A, and C, are important to

ns (information and graph). The graph dimension,

represent the multi-fractal characteristics in terms of co-dimensi
ghness 1;15% ystem. The information dimension, represented
N 2

represented by (2 — H)), is a first-order estimate of rough 1 ¢
by (1 — Cy), is a first-order estimate of sparseness,of stroi adient distributed in the system. Both parameters have

analytical meanings: C, (sparseness) is related
entiability.

order of the stationarity is: the oced
mediate layer. However, the informati

n of the southwestern GIN Sea upper thermal field varies slightly
fy is very low.
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